Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.857
Filtrar
1.
Rehabilitación (Madr., Ed. impr.) ; 58(2): 1-4, abril-junio 2024. ilus
Artículo en Español | IBECS | ID: ibc-232120

RESUMEN

El síndrome de Parsonage-Turner o plexopatía braquial idiopática es una inflamación total o parcial del plexo braquial cuya presentación típica es una omalgia intensa y súbita, seguida de debilidad braquial y amiotrofia precoz. La etiología es desconocida, aunque se propone un mecanismo inmunomediado.El trasplante de progenitores hematopoyéticos es un tratamiento bien establecido de las neoplasias hematológicas y tiene un papel creciente en el tratamiento de enfermedades autoinmunes. Los efectos adversos neurológicos son probablemente infradiagnosticados.La asociación del síndrome de Parsonage-Turner y el trasplante de progenitores hematopoyéticos es muy poco conocida. Describimos dos casos clínicos de plexopatía braquial idiopática tras trasplante de células stem (progenitores) hematopoyéticas (TPH).La reconstitución del sistema inmune tras un trasplante de progenitores hematopoyéticos puede ser un desencadenante de plexopatía braquial, aunque se necesitan más estudios para entender la fisiopatología de esta entidad y establecer su relación causal con el trasplante. (AU)


Parsonage-Turner syndrome or idiopathic brachial neuritis is a total or partial inflammation of the brachial plexus, with a typical presentation as a sudden and very intense pain in the shoulder, followed by weakness and early amyotrophy. The etiology is still unknown, although an immune mediated mechanism is thought to be involved.Hematopoietic stem cell transplantation is a well-established treatment for hematological malignancies, but with a growing implication in the treatment of autoimmune diseases. The neurological side effects are probably underdiagnosed.The association of the Parsonage-Turner syndrome and the hematopoietic stem cell transplantation is scarce. We describe two clinical cases of idiopathic brachial plexopathy after hematopoietic stem cell transplantation.The reconstruction of the immune system after a transplant may be the trigger of a brachial plexopathy, but more studies are necessary for the etiology of this disease to be understood and to establish a cause-effect relation with the transplant. (AU)


Asunto(s)
Humanos , Masculino , Adulto , Trasplante , Neuropatías del Plexo Braquial , Neuritis del Plexo Braquial , Hematínicos , Sistema Inmunológico , Plexo Braquial
2.
Neurosci Bull ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656419

RESUMEN

The existence of neural stem cells (NSCs) in the adult mammalian nervous system, although small in number and restricted to the sub-ventricular zone of the lateral ventricles, the dentate gyrus of the hippocampus, and the olfactory epithelium, is a gift of evolution for the adaptive brain function which requires persistent plastic changes of these regions. It is known that most adult NSCs are latent, showing long cell cycles. In the past decade, the concept of quiescent NSCs (qNSCs) has been widely accepted by researchers in the field, and great progress has been made in the biology of qNSCs. Although the spontaneous neuronal regeneration derived from adult NSCs is not significant, understanding how the behaviors of qNSCs are regulated sheds light on stimulating endogenous NSC-based neuronal regeneration. In this review, we mainly focus on the recent progress of the developmental origin and regulatory mechanisms that maintain qNSCs under normal conditions, and that mobilize qNSCs under pathological conditions, hoping to give some insights for future study.

3.
Stem Cell Rev Rep ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656478

RESUMEN

Stem cell transplantation is a promising therapeutic strategy for myocardial infarction (MI). However, engraftment, survival and differentiation of the transplanted stem cells in ischemic and inflammatory microenvironment are poor. We designed a novel self-assembly peptide (SAP) by modifying the peptide RADA16 with cell-adhesive motif and BMP-2 (bone morphogenetic protein-2)-binding motif. Effects of the functionalized SAP on adhesion, survival and differentiation of c-kit+ MSCs (mesenchymal stem cells) were examined. Myocardial regeneration, neovascularization and cardiac function were assessed after transplantation of the SAP loading c-kit+ MSCs and BMP-2 in rat MI models. The SAP could spontaneously assemble into well-ordered nanofibrous scaffolds. The cells adhered to the SAP scaffolds and spread well. The SAP protected the cells in the condition of hypoxia and serum deprivation. Following degradation of the SAP, BMP-2 was released sustainedly and induced c-kit+ MSCs to differentiate into cardiomyocytes. At four weeks after transplantation of the SAP loading c-kit+ MSCs and BMP-2, myocardial regeneration and angiogenesis were enhanced, and cardiac function was improved significantly. The cardiomyocytes differentiated from the engrafted c-kit+ MSCs were increased markedly. The differentiated cells connected with recipient cardiomyocytes to form gap junctions. Collagen volume was decreased dramatically. These results suggest that the functionalized SAP promotes engraftment, survival and differentiation of stem cells effectively. Local sustained release of BMP-2 with SAP is a viable strategy to enhance differentiation of the engrafted stem cells and repair of the infarcted myocardium.

4.
Biomater Adv ; 160: 213861, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663159

RESUMEN

Novel strategies employing mechano-transducing materials eliciting biological outcomes have recently emerged for controlling cellular behaviour. Targeted cellular responses are achieved by manipulating physical, chemical, or biochemical modification of material properties. Advances in techniques such as nanopatterning, chemical modification, biochemical molecule embedding, force-tuneable materials, and artificial extracellular matrices are helping understand cellular mechanotransduction. Collectively, these strategies manipulate cellular sensing and regulate signalling cascades including focal adhesions, YAP-TAZ transcription factors, and multiple osteogenic pathways. In this minireview, we are providing a summary of the influence that these materials, particularly titanium-based orthopaedic materials, have on cells. We also highlight recent complementary methodological developments including, but not limited to, the use of metabolomics for identification of active biomolecules that drive cellular differentiation.

5.
Cell Stem Cell ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38663406

RESUMEN

Due to the limitations of autologous chimeric antigen receptor (CAR)-T cells, alternative sources of cellular immunotherapy, including CAR macrophages, are emerging for solid tumors. Human induced pluripotent stem cells (iPSCs) offer an unlimited source for immune cell generation. Here, we develop human iPSC-derived CAR macrophages targeting prostate stem cell antigen (PSCA) (CAR-iMacs), which express membrane-bound interleukin (IL)-15 and truncated epidermal growth factor receptor (EGFR) for immune cell activation and a suicide switch, respectively. These allogeneic CAR-iMacs exhibit strong antitumor activity against human pancreatic solid tumors in vitro and in vivo, leading to reduced tumor burden and improved survival in a pancreatic cancer mouse model. CAR-iMacs appear safe and do not exhibit signs of cytokine release syndrome or other in vivo toxicities. We optimized the cryopreservation of CAR-iMac progenitors that remain functional upon thawing, providing an off-the-shelf, allogeneic cell product that can be developed into CAR-iMacs. Overall, our preclinical data strongly support the potential clinical translation of this human iPSC-derived platform for solid tumors, including pancreatic cancer.

6.
J Infect ; : 106162, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663756

RESUMEN

OBJECTIVES: Nocardiosis is a rare but life-threatening infection after hematopoietic cell transplantation (HCT). We aimed at identifying risk factors for nocardiosis after allogeneic HCT and clarifying the effect of trimethoprim-sulfamethoxazole prophylaxis on its occurrence. METHODS: We performed a retrospective multicenter case-control study of patients diagnosed with nocardiosis after allogeneic HCT between January 2000 and December 2018. For each case, two controls were matched by center, transplant date, and age group. Multivariable analysis was conducted using conditional logistic regression to identify potential risk factors for nocardiosis. Kaplan-Meier survival curves of cases and controls were compared using log-rank tests. RESULTS: Sixty-four cases and 128 controls were included. Nocardiosis occurred at a median of 9 months after allogeneic HCT (interquartile range: 5-18). After adjustment for potential confounders in a multivariable model, Nocardia infection was associated with tacrolimus use (adjusted odds ratio [aOR] 9.9, 95% confidence interval [95% CI]: 1.6-62.7), lymphocyte count <500/µL (aOR 8.9, 95% CI: 2.3-34.7), male sex (aOR 8.1, 95% CI: 2.1-31.5), recent use of systemic corticosteroids (aOR 7.9, 95% CI: 2.2-28.2), and recent CMV infection (aOR 4.3, 95% CI: 1.2-15.9). Conversely, use of trimethoprim-sulfamethoxazole prophylaxis was associated with a significantly decreased risk of nocardiosis (aOR 0.2, 95% CI: 0.1-0.8). HCT recipients who developed nocardiosis had a significantly decreased survival, as compared with controls (12-month survival: 58% and 90%, respectively; p<0.0001). CONCLUSIONS: We identified six factors independently associated with the occurrence of nocardiosis among allogeneic HCT recipients. In particular, trimethoprim-sulfamethoxazole prophylaxis was found to protect against nocardiosis.

7.
Transplant Cell Ther ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663767

RESUMEN

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative strategy against a variety of malignant and nonmalignant disorders. However, acute and chronic graft-versus-host disease (aGVHD and cGVHD, respectively) commonly complicate this approach, culminating in substantial morbidities and mortalities. The integumentary system is the preponderant organ involved in cGVHD, and its response to existing treatments, including well-versed immunosuppressants and novel targeted therapies, is not desirable. Despite the rarity, ulcers of sclerotic skin cGVHD are treatment-refractory and associated with significant morbidities and an exaggerated risk of infectious complications. Platelet-rich plasma (PRP) and its derivatives are endowed with growth factors and proangiogenic molecules and hold regenerative potential. OBJECTIVES: To assess the safety and efficacy of the application of platelet gel-containing dressing for the management of ulcerative skin cGVHD in pediatric patients. STUDY DESIGN: This randomized trial is conducted at the hematopoietic stem cell transplantation unit of the Children's Medical Center Hospital in Tehran, Iran. Twenty-one pediatric patients (aged between 5 and 15 years) were initially enrolled, and 16 met the inclusion criteria. All cases (four females) were recipients of allo-HSCT who had been complicated with symmetrically or near-symmetrically ulcerative sclerotic skin cGVHD. Fresh umbilical cord blood (UCB) was obtained from healthy donors and underwent centrifugation using a novel PRP preparation kit in a single-step process. Platelet gel was produced by adding thrombin to the isolated buffy coat layer. Two similar ulcers of each patient were randomized to receive either conventional dressing or platelet gels up to 6 times. At each time point evaluation, ulcer size and its relative reduction compared to the basal size were recorded. RESULTS: Included patients received a total of 80 platelet gel-containing dressings. While the mean sizes of randomized ulcers at the beginning of the study were similar, their differences became significant 15 days after the initiation of intervention (P = 0.019). In addition, the mean reduction in the ulcers' surface area (in comparison to their baseline values) was significantly higher for the intervention arm at all evaluation points (P = 0.001 for day five and P < 0.001 for subsequent time points). At the end of the trial, the number of ulcers with a more than 50% reduction in size was 14 (87.5%) in the intervention arm (including six completely healed ulcers) versus one (6.25%, which was not completely healed) in the control arm (P < 0.001). None of the patients exhibited any localized or systemic treatment-related adverse events. CONCLUSIONS: In this study, using a relatively large number of cases, we showed that UCB-derived platelet gel is a safe, feasible, and effective curative approach for skin ulcers of sclerotic skin cGVHD in pediatric patients. Designing upcoming trials on the efficacy of this therapeutic approach for ocular, mucosal, and acute skin GVHD is prudent. TRIAL REGISTRATION: Retrospectively registered at the Iranian Registry of Clinical Trials (registration number IRCT20190101042197N1) on August 24, 2020.

8.
Trends Neurosci ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664110

RESUMEN

In a recent study, Shvedov and colleagues used live two-photon imaging in transgenic zebra finches to reveal migration patterns of neuroblasts through the complex environment of the postembryonic brain. This study highlights the value of ubiquitin C/green fluorescent protein (UBC-GFP) transgenic zebra finches in studying adult neurogenesis and advances our understanding of dispersed long-distance neuronal migration in the adult brain, shedding light on this understudied phenomenon.

9.
Br J Haematol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664918

RESUMEN

In this multicentre, real-world study, we aimed to identify the clinical outcomes and safety of allogeneic haematopoietic stem cell transplantation (allo-HSCT) in T-lymphoblastic lymphoma (T-LBL). A total of 130 Ann Arbor stage III or IV T-LBL patients (>16 years) treated with allo-HSCT across five transplant centres were enrolled. The 2-year cumulative incidence of disease progression, the probabilities of progression-free survival (PFS), overall survival (OS) and non-relapse mortality (NRM) after allo-HSCT were 21.0%, 69.8%, 79.5% and 9.2% respectively. Patients with central nervous system (CNS) involvement had a higher cumulative incidence of disease progression compared with those without CNS involvement (57.1% vs. 18.9%, HR 3.78, p = 0.014). Patients receiving allo-HSCT in non-remission (NR) had a poorer PFS compared with those receiving allo-HSCT in complete remission (CR) or partial remission (49.2% vs. 72.7%, HR 2.21, p = 0.041). Particularly for patients with bone marrow involvement and achieving CR before allo-HSCT, measurable residual disease (MRD) positivity before allo-HSCT was associated with a poorer PFS compared with MRD negativity (62.7% vs. 86.8%, HR 1.94, p = 0.036). On multivariate analysis, CNS involvement at diagnosis and receiving allo-HSCT in NR were associated with disease progression. Thus, our real-world data suggested that allo-HSCT appeared to be an effective therapy for adult T-LBL patients with Ann Arbor stage III or IV disease.

10.
J Dent Res ; : 220345241236120, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38665065

RESUMEN

Alveolar bone, as tooth-supporting bone for mastication, is sensitive to occlusal force. However, the mechanism of alveolar bone loss after losing occlusal force remains unclear. Here, we performed single-cell RNA sequencing of nonhematopoietic (CD45-) cells in mouse alveolar bone after removing the occlusal force. Mesenchymal stromal cells (MSCs) and endothelial cell (EC) subsets were significantly decreased in frequency, as confirmed by immunofluorescence and flow cytometry. The osteogenic and proangiogenic abilities of MSCs were impaired, and the expression of mechanotransducers yes associated protein 1 (Yap) and WW domain containing transcription regulator 1 (Taz) in MSCs decreased. Conditional deletion of Yap and Taz from LepR+ cells, which are enriched in MSCs that are important for adult bone homeostasis, significantly decreased alveolar bone mass and resisted any further changes in bone mass induced by occlusal force changes. Interestingly, LepR-Cre; Yapf/f; Tazf/f mice showed a decrease in CD31hi endomucin (Emcn)hi endothelium, and the expression of some EC-derived signals acting on osteoblastic cells was inhibited in alveolar bone. Mechanistically, conditional deletion of Yap and Taz in LepR+ cells inhibited the secretion of pleiotrophin (Ptn), which impaired the proangiogenic capacity of LepR+ cells. Knockdown in MSC-derived Ptn repressed human umbilical vein EC tube formation in vitro. More important, administration of recombinant PTN locally recovered the frequency of CD31hiEmcnhi endothelium and rescued the low bone mass phenotype of LepR-Cre; Yapf/f; Tazf/f mice. Taken together, these findings suggest that occlusal force governs MSC-regulated endothelium to maintain alveolar bone homeostasis through the Yap/Taz/Ptn axis, providing a reference for further understanding of the relationship between dysfunction and bone homeostasis.

11.
Front Bioeng Biotechnol ; 12: 1386692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665810

RESUMEN

Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant.

12.
J Korean Med Sci ; 39(14): e137, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622941

RESUMEN

Our study analyzed 95 solid organ transplant (SOT) and 78 hematopoietic stem cell transplant (HSCT) recipients with prior coronavirus disease 2019 (COVID-19). Patients who underwent transplantation within 30 days of COVID-19 infection comprised the early group, and those who underwent transplantation post-30 days of COVID-19 infection comprised the delayed group. In the early transplantation group, no patient, whether undergoing SOT and HSCT, experienced COVID-19-associated complications. In the delayed transplantation group, one patient each from SOT and HSCT experienced COVID-19-associated complications. Additionally, among early SOT and HSCT recipients, two and six patients underwent transplantation within seven days of COVID-19 diagnosis, respectively. However, no significant differences were observed in the clinical outcomes of these patients compared to those in other patients. Early transplantation following severe acute respiratory syndrome coronavirus 2 infection can be performed without increased risk of COVID-19-associated complications. Therefore, transplantation needs not be delayed by COVID-19 infection.


Asunto(s)
COVID-19 , Trasplante de Órganos , Humanos , Prueba de COVID-19 , SARS-CoV-2 , Receptores de Trasplantes
13.
Cell Rep ; 43(4): 114024, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38581679

RESUMEN

Mouse embryonic stem cells (mESCs) in the primed pluripotency state, which resembles the post-implantation epiblast, can be de-differentiated in culture to a naive state that resembles the pre-implantation inner cell mass. We report that primed-to-naive mESC transition entails a significant slowdown of DNA replication forks and the compensatory activation of dormant origins. Using isolation of proteins on nascent DNA coupled to mass spectrometry, we identify key changes in replisome composition that are responsible for these effects. Naive mESC forks are enriched in MRE11 nuclease and other DNA repair proteins. MRE11 is recruited to newly synthesized DNA in response to transcription-replication conflicts, and its inhibition or genetic downregulation in naive mESCs is sufficient to restore the fork rate of primed cells. Transcriptomic analyses indicate that MRE11 exonuclease activity is required for the complete primed-to-naive mESC transition, demonstrating a direct link between DNA replication dynamics and the mESC de-differentiation process.


Asunto(s)
Replicación del ADN , Proteína Homóloga de MRE11 , Animales , Ratones , Proteína Homóloga de MRE11/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Desdiferenciación Celular , Proteínas de Unión al ADN/metabolismo
14.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583153

RESUMEN

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Asunto(s)
Diferenciación Celular , Ventrículos Laterales , Factor Inhibidor de Leucemia , Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Transducción de Señal
15.
Biol Open ; 13(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592154

RESUMEN

Each year, the European Summer School on Stem Cell Biology and Regenerative Medicine (SCSS) attracts early-career researchers and actively practicing clinicians who specialise in stem cell and regenerative biology. The 16th edition of this influential course took place from 12th to 19th September 2023 on the charming Greek island of Spetses. Focusing on important concepts and recent advances in stem cells, the distinguished faculty included experts spanning the spectrum from fundamental research to clinical trials to market-approved therapies. Alongside an academically intensive programme that bridges the various contexts of stem cell research, delegates were encouraged to critically address relevant questions in stem cell biology and medicine, including broader societal implications. Here, we present a comprehensive overview and key highlights from the SCSS 2023.


Asunto(s)
Medicina Regenerativa , Células Madre , Humanos , Investigadores , Estaciones del Año
16.
Cell Rep ; 43(4): 114077, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38592974

RESUMEN

Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.


Asunto(s)
Desarrollo Embrionario , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Animales , Desarrollo Embrionario/genética , Ratones , Elementos de Facilitación Genéticos/genética , ARN/metabolismo , ARN/genética , Femenino , Embrión de Mamíferos/metabolismo , Cigoto/metabolismo , Redes Reguladoras de Genes , Masculino
17.
Proc Natl Acad Sci U S A ; 121(16): e2320883121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598342

RESUMEN

Differentiation of pancreatic endocrine cells from human pluripotent stem cells (PSCs) has been thoroughly investigated for application in cell therapy against diabetes. In the context of induced pancreatic endocrine cell implantation, previous studies have reported graft enlargement resulting from off-target pancreatic lineage cells. However, there is currently no documented evidence of proliferative off-target cells beyond the pancreatic lineage in existing studies. Here, we show that the implantation of seven-stage induced PSC-derived pancreatic islet cells (s7-iPICs) leads to the emergence of unexpected off-target cells with proliferative capacity via in vivo maturation. These cells display characteristics of both mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs), termed proliferative MSC- and SMC-like cells (PMSCs). The frequency of PMSC emergence was found to be high when 108 s7-iPICs were used. Given that clinical applications involve the use of a greater number of induced cells than 108, it is challenging to ensure the safety of clinical applications unless PMSCs are adequately addressed. Accordingly, we developed a detection system and removal methods for PMSCs. To detect PMSCs without implantation, we implemented a 4-wk-extended culture system and demonstrated that putative PMSCs could be reduced by compound treatment, particularly with the taxane docetaxel. When docetaxel-treated s7-iPICs were implanted, the PMSCs were no longer observed. This study provides useful insights into the identification and resolution of safety issues, which are particularly important in the field of cell-based medicine using PSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Islotes Pancreáticos , Humanos , Docetaxel , Diferenciación Celular , Implantación del Embrión
18.
Cell Rep ; 43(4): 114092, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607913

RESUMEN

Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.


Asunto(s)
Fibroblastos , Macrófagos , Pericardio , Regeneración , Pez Cebra , Animales , Macrófagos/metabolismo , Pez Cebra/metabolismo , Fibroblastos/metabolismo , Regeneración/fisiología , Pericardio/metabolismo , Pericardio/citología , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/genética , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Corazón/fisiología , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-38613320

RESUMEN

Melanocyte stem cells (McSCs) of the hair follicle are a rare cell population within the skin and are notably underrepresented in whole-skin, single-cell RNA sequencing (scRNA-seq) datasets. Using a cell enrichment strategy to isolate KIT+/CD45- cells from the telogen skin of adult female C57BL/6J mice, we evaluated the transcriptional landscape of quiescent McSCs (qMcSCs) at high resolution. Through this evaluation, we confirmed existing molecular signatures for qMcCS subpopulations (e.g., Kit+, Cd34+/-, Plp1+, Cd274+/-, Thy1+, Cdh3+/-) and identified novel qMcSC subpopulations, including two that differentially regulate their immune privilege status. Within qMcSC subpopulations, we also predicted melanocyte differentiation potential, neural crest potential, and quiescence depth. Taken together, the results demonstrate that the qMcSC population is heterogeneous and future studies focused on investigating changes in qMcSCs should consider changes in subpopulation composition.

20.
Cell Rep ; 43(4): 114113, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625792

RESUMEN

The continuous regeneration of spermatogonial stem cells (SSCs) underpins spermatogenesis and lifelong male fertility, but the developmental origins of the SSC pool remain unclear. Here, we document that hnRNPU is essential for establishing the SSC pool. In male mice, conditional loss of hnRNPU in prospermatogonia (ProSG) arrests spermatogenesis and results in sterility. hnRNPU-deficient ProSG fails to differentiate and migrate to the basement membrane to establish SSC pool in infancy. Moreover, hnRNPU deletion leads to the accumulation of ProSG and disrupts the process of T1-ProSG to T2-ProSG transition. Single-cell transcriptional analyses reveal that germ cells are in a mitotically quiescent state and lose their unique identity upon hnRNPU depletion. We further show that hnRNPU could bind to Vrk1, Slx4, and Dazl transcripts that have been identified to suffer aberrant alternative splicing in hnRNPU-deficient testes. These observations offer important insights into SSC pool establishment and may have translational implications for male fertility.


Asunto(s)
Espermatogénesis , Espermatogonias , Animales , Masculino , Ratones , Espermatogénesis/genética , Espermatogonias/metabolismo , Espermatogonias/citología , Diferenciación Celular , Testículo/metabolismo , Testículo/citología , Empalme Alternativo/genética , Células Madre/metabolismo , Células Madre/citología , Células Madre Germinales Adultas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...